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ABSTRACT

In this paper boundary value problems on infinite intervals are
treated. There is a theory for problems of this kind which requires the
fundamental matrix of the system of differential equations to have certain
decay properties near infinity. The aim of this paper is to establish a
theory which holds under weaker and more realistic assumptions. The analysis
for linear problems is done by determining the fundamental matrix of the
system of differential equations asymptotically. For inhomogeneous problems a
suitable particular solution having a 'nice' asymptotic behaviour is chosen
and so global existence and uniqueness theorems are established in the linear
case. The asymptotic behaviour of this solution follows immediately. WNon-
linear problems are treated by using perturbation techniques meaning
linearization near infinity and by using the methods for the linear case.
Moreover, some practical problems from fluid dynamics and thermodynamics are

dealt with and they illustrate the power of the asymptotic methods used.
N
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SIGNIFICANCE AND EXPLANATION

Boundary value problems on infinite intervals occur in many areas of
physics, for example in fluid mechanics when similarity solutions of the
Navier-Stokes equations describing the flow over an infinite medium are
sought.. Problems which are dealt with in this paper have the following
form. We look for a solution of a system of differential equations over an
infinite interval which is continuous at infinity and which fulfills certain
boundary conditions at a finite point and at infinity. The following
questions arise immediately: which condition on the differential equation and
on the boundary conditions assure the existence and the uniqueness of a
solution and how does this solution depend on the data. There is a well known
theory for problems of this kind, but it can only be applied to problems where
the fundamental matrix of the system of differential equations has certain
convergence properties near infinity. However this assumption is not
fulfilled for many practical problems. This paper answers the above named
question under very weak assumptions on the problems. Moreover some fluid

dynamical problems illustrating the power of the theory developed are dealt
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ANALYSIS OF BOUNDARY VALUE PROBLEMS
ON INFINITE INTERVALS

PETER A. MARKOWICH

1. Introduction.

This paper is concerned with the analysis of boundary value problems on infinite

intervals posed in the following way

(1.1) y' = tiHey), 1<t e, aeN

(1.2) y € C({1,®]): ¢<==> y € C({1,%)) and 1im y(t) = y{®) exists
T+

(1.3) b(y(1),y(®)) = 0

where y 18 an n-vector, f and b are nonlinear mappings.

Equation (1.1) has a singularity of the second kind at t = of rank o + 1,
because we assume that f is continuous in (®,y{®)). The goal is to establish existence
and unigqueness theorems for very general f's and b's , to gain information on the
behaviour of y for large t and - in the linear inhomogenous case ~ to investigate the
dependence of y on the boundary data and the inhomogenity.

Problems of this kind frequently occur in fluid dynamics when stationary similarity
solutions of the Navier-Stokes equations for certain flow~constellations are sought (see
for example McLeod (1969); Markowich (1980); Lentini and Keller (1980), Cohen, Fokas and

Lagerstr;m (1978)).
For application in other areas of physics see for example Lentini (1978).

Much analytical work has been done on singular boundary value problems of the second

kind. F. de Hoog and Richard Weiss (1980a,b) investigated the case where gé (©,y(=}} has

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062.
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no eigenvalue on the imaginary axis by linearizing f around y(®) and evaluating at

t = ©» g0 getting the constant coefficient problem

(1.5) z' = tafy("',y("))z

and by employing perturbation techniques which are based on estimates derived for a certain
particular solution of linear inhomogenous problems. They could establish uniqueness and
existence theorems. M. Lentini and H. B. Keller (1980) extended this approach neglecting
the assumption on the eigenvalues but they required that the projection of fy(t,y(w))

onto the direct sum of invariant subspaces of Ey(ﬂ,y(“)) which correspond to an imaginary

-{a+1 €
t (a+1) - , where r is the largest dimension of these

elgenvalue, converge, at least as
subspaces and € > 0 . It turns out that this assumption is crucial and the
perturbation approach breaks down if fy(“,y(“)) has eigenvalues with real part zero and
if the convergence recquirement is neglected. However many practical problems do not
fulfill this convergence-requirement in the presence of imaginary eigenvalues (see for
example Cohen, Fokas and Lagerstrom (1978) and M. Lentini and V. Pereyra (1977) and
therefore a more general approach is necessary.

In this paper asymptotic series are used in order to determine asymptotically
fundamental solution matrices of linear systems of the form:
(1.6) v = tPA(t)y £ 2> S,
The basic assumption is that A is analytical in [§,%)] for some & > 1, so that

©
(1.7) ace) = [ A t7h where a =1 1im Soack) .
i=0 x+0+ dx

Then a fundamental matrix ¢(t) of (1.6) can be calculated as an asmptotic (formal) log-
exponential series from the coefficients Ai by a recursive algorithm (see Coddington and
Levinson (1955) and Wasow (1965)).

Agssumption (1.7) can be weakened so that only a finite but large enough number of
these derivatives exist. Equation (1.1) is treated by linearization around y(w)
obtaining the variable coefficient problem

(1.8) z' = tafy(t,y(”))z

and again by employing similar perturbation techniques. The advantages of the formal-

series approach is twofold. Firstly no restrictions (except (1.7)) have to be made

o £/s i




concerning the convergence behaviour of ty(t,y(')). secondly the asymptotic behaviour of

the (basic) solutions is obtained directly. The asymptotic behaviour is crucial for the

determination of appropriate numerical procedures for problems (1.1), (1.2), (1.3). (see

N Lentini and Keller (1980), Markowich (1980) and de Hoog and Weiss (1980b)). r

This paper is organized in the following way, in chapter 1 some remarks are made on

linear inhomogenous constant coefficient problems (see Lentini and Keller (1980)), in
Chapter 2 the case where A(®) has distinct eigenvalues is treated, in Chapter 4 we admit a
general Jordan canonical form of A(*) and i)  hapter 5 we get to nonlinear problems of
the form (1.1), (1.2), (1.3). Chapter 6 is concerned with practical examples which

illustrate the power of the used asymptotic methods.




2. Linear problems with constant coefficients.

We consider problems of the form

: (2.1) vy - tPay = t%F(t) 1 <t<®, aeR,a> -1
‘_ (2.2) ye c(1,2])
(2.3) B,y(1) + By(*) = 8

where the n x n-Matrix A # 0 .

At first we transform A to its Jordan canonical form J

(2.4) A=gJE!

and substitute
{2.42) u=°rly .

So we get the new problem

(2.5) w - 2 3(te = % ey
(2.6) we Cl1,°])
(2.7) BE u(1) + RE ul®) = 8 .

Without loss of generality we can assume that J has the block diagonal form

(2.8) 3 = atags’, 3% 37

where the real part of the eigenvalues of J* are positive. The real parts of the
eigenvalues of J%  are equal to zero and the real parts of the eigenvalues of J~ are
negative., This structure can always be obtained by reordering the columns of E . Let the
dimensions of these three matrices be r,, rg resp. r_.

The diagonal projections D,, Dy, D. are obtained by taking the main-diagonal of J
and by replacing every eigenvalue with positive, zero resp. negative real part by 1t and
all others by zero so that
(2.9) I =D, +Dy +D_
holds.

Furthermore let 5 be the projection onto the direct sum of eigenspaces of J

0

associated with zero eigenvalues, which is obtained by replacing by zero every (diagonal)
element of Do which is not associated with the first column of a Jordan block of J

helonging to a zero eigenvalue.

Y-




Let the number of nonzero columne of D, which equals the geometrical multiplicity of

0
. the eigenvalue zero, be ;0 . The general solution of the homogenous problem (2.5), (2.6)
is:
- ta+1 - n
. (2.10) u (t) = ¢(t)(D, + D_)E = exp(J o7 ) Dy +0 6, Eec.

In order to solve the inhomogenous problem (2.5) we look for a particular solution
u, € C([1,%]).
F. de Hoog and R. Weiss (1980a,b) and M. Lentini and H. B. Keller (1980) suggested the

following choice:

u (£) = (HEY() = ¢(t) [ 0,67 ()E  e(a)s a8 +
o«

t -1 -1 [+
(2.11) + $(t) i Dy (8)E f(s)s ds +

+ o) [ D_¢'1(s)z'1f(s)s“ds
3

with 6§ € [1,®) .
We denote the three terms on the right hand side of (2.11) by

u = H+f, up = Hof resp. up = H_f. F. de Hoog and Richard weiss (1980a) showed
+ 0 -
that u and u are in C([1,»]) if D_E~
p, p_

-1
J(p, + D_)up(w) = -(D,_ +D_)E f(®) holds.

1 1

f and D,E"'f are in C([1,2]) and that

M. Lentini and H. B. Keller (1980) showed that

€ -(a+1)z-e)

- -1
fu, (£)1 = 0(t ™) if IDE £1 = o(t

0
where € > 0 and r is the maximal dimension of the invariant subspaces of J associated

with eigenvalues on the imaginary axis. Therefore the operator H operates on the space

of all functions € , which fulfill:

~(a+1)r-¢

(2.12) fec(l1,]) and oos'1f(c) = Fylt)t

with Fo € Cb([1,°)), where Cb(ll,')) is the space of functions which are continuous on

[t,2) and bounded as t + « ,




Inserting the general solution of (2.5), (2.6) into (2.7) we get

le =

= J
((B.E + B_E)D_ + B Eexp(——=)D
(2.13) 1 ='C0 T " a+
- - [B,Eu (1) + B Eu (»)].
B - [B,Bu (1) + B_Eu (=) ' ]

Therefore we conclude f’

Thereom 2.1. The problem (2.1), (2.2}, (2.3) has a unique solution y for

" r +r
all f which fulfill (2.12) and B ¢ R 0 , 1if and only if
= J = '
(2.14) rank[(B.E + BE)D, + Bexp(7)D_| = rj + r_ ¥

where B, and B, are (;0 + r_) x n matrices. y
In this case y depends continuously (in the norm I),'I[1 ] 3=
[
t= max ly(t)I) on the data B8 , (D, + D_)E'1f and Fp «
t e [1,%)

The lst statement follows directly from estimates given in the papers cited above. We v

see that (2.2) is an additional boundary condition at t = « of the rank r, + (ro - ;0).
Now we investigate the decay properties of up in dependence of the decay properties

of f:

Theroem 2.2, If f fulfills (2.12) then the following estimates hold for t 2 §:

-1

(2.15) I(H+f)(t)| < const. ID+E fl[t'm]

(2.16) P(H £) (£ < const. t™° max ls‘“*”r*epoa"f(s)l
st

with € > 0 .

If Y 2 0 then

(2.17) L(H_£)(£)) € const. t)  max  Is'

§¢<g <t

b_E 'e(a)

P

all constants are independent of f and § .

The first two estimates have been proved by M. Lentini and H. B. Keller (1980).




——

The third estimate follows from

A a+1 A a+t

a+1 t a+1 a+l  a+l i-1 _a=-y
f e -8 8

lu_ (t)l < c.max(e (t ) ds) max IsYD_E-1(s)I
L i=1(1)k 8 8<ast
where -) 1is the largest real part of eigenvalues of J with A > 0 and k 1is the

maximal dimension of the associated Jordan-blocks.

By applying Taylor's formula to

A sa+1
+ + +1 i- -
ft ea 1 (ta L sa 1)1 1sq Yds
§
g;te) A ot
ea+1 t-y

it is easy to conclude that lim gi(t) = const. In particular Theorem 2.2 tells us that
o
inhomogenities which converge to zero as a power function produce a particular solution

which converges as a power function whose exponent is increased by (a + 1)r .
Now we want to investigate exponentially decreasing inhomogenities.
If an_¢-’(s)E-1f(s)sads exists we can substitute H_ by ﬁ_ which is defined by
(2.18) ’ (H_6)(e) = ¢(t) [ b o N (s)E 'E(s)s%s .
®

Now we prove:

Theorem 2.3. Let J  consist of Jordan blocks belonging to the same eigenvalue -} and

let k be the dimension of the largest of these blocks.

Furthermore let D_E 'f(t) = texp(- ey t*"VF () with F_¢ C ({1,®)), B €R and

w>0 .+ Then for t > § :

w a+1)

(2.19) H(H_£)(t)} < const, tsexp(— —t

¥
a+l F

- [6 ot]

if ReX - w > 0 .
w tu+1)t(a+1)k+5

(2.20) F(H_£)(t)} < const. exp( - a1 &nte 1F_0

(8,t]

if Rel - w = (0 and B » -k(a+1} The factor 2nt only appears

if B = -k(a+1) .

(2.21) VE_£) (811 < const. exp(~ =25 £7) tk(°+1)+BlF_l[t o

if ReA = w =0 and B < -k(a + 1).

-7~




(2.22) HH_£)(t)) < const. exp(- —o= t;"m):ﬂua-_l[t .

if Rel - w < 0, l
All constants are independent of f and § . i
The proofs work analogously to Theorem 2.2. Theorem 2.3 implys that exponentially ]

decaying inhomogenities produce inhomogenities which converge with the same exponential

factor, only the algebraic factor may change and a logarithmic factor may appear. If ﬁ_ |

oxists then it cuts off the terms of the particular solution which are already included in ;

#(e)D_E.

Assume now that J~ consists of more than one Jordan block with different eigenvalues

and that D_E"f(t) has the form as in Theorem 3. Then H_ and ﬁ_ may be used in order
to gain a particular solution which decays as fast as possible according to the different

cases of Theorem 2.3. Doing this D_ has to be split up into the projections onto the

direct sums of the invariant subspaces asgsociated with different eigenvalues with negative
real part and H_ resp i_ have to be applied to the resulting subsystems. We will call

the resulting operator H. Its composition depends on the decay properties of f and

on J .




3. Linear Variable Coefficient Problems - Distinct Eigenvalues.

Now we analyze

(3.1) y' - t2alt)y = t%(v), ae N
(3.2) y € C({1,%})
(3.3) By(1) + B_y(=) = 8 [ i

The n x n matrix A(t) fulfills:

(3.4) AeC({1,%]), A=) #0 .
(3.5) A is analytic on [§,®) for some 6§ > 1
so that
T i
(3.6a) A(t) = Z Ait- for t sufficiently large where
i=0 1 at ]
(3.6b) Ai =i lim -3 A x ).

x+0+ dx
The basic assumption of this chapter is that the eigenvalues of Ao = A(®) are distinct.

Let J; be the Jordan canonical form of A, obtained by the transform-

ation

- -1
(3.7) Ry =EJy E

and let the Ji's be defined by
1.

(3.8) Ay =EJ; E
The matrices J; are the coefficients of the series
-1 ® i
(3.9) J(t) = E A(t)E = | It for t + ® .
i=0
We set
(3.10) Jo = diag(k1, see, Xn), Ai # Xj for i# 5

and assume that:

Re)\i >N for 1 < i < r,
= £ < .
(3.11) Relr+#j 0 for 1 3 < Ty r, + T, +r_+n
< <
Rexr++r0+k <0 for 1 k r_

Again we substitute
-1
(3.12) u=E y

and get the problem

-9-
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i (3.13)

(3.14)

(3.15)

if

(3.16)
Therefore

(3.17)

For the following we need the definition of an asymptotic seriles.

w = t¥J(t)u =t L), 1<tcw

ue c([1,=]).

said to be represented asymptotically by a formal series:

L]
P(t) ~ § Pit-i, tr o
1=0
T -1
ey - ] X ]+0 for t+ = anda m>0 .
i=0
T -1 ~-m-1
p(t) = § Pt 4 O(t ) for t*® and m> 0
i=0

holds. To get more information on asymptotic series see Wasow (1965).

A function P(t)

is

Coddington and Levinson (1955) and Wasow (1965) prove an asymptotic representation of

the fundamental matrix of the homogenous system (3.13) which we state in

Theorem 3.1.

Under the given assumptions on J{(t)

a fundamental solution of the form:

o(t) = p(e) tPe2(®)

the homogenous system (3.13) possesses

Here D = diaq(d1,---,dn), Qit) = diag{q1(t),"'.qn(t)) where the ai(t) are polynomials

in t of degree a + 1, so that

tu+1 @
QE) = Jg e Y Qg At

with diagonal matrices Qi' P(t) admits the asymptotic expansion:

P(¢) ~ ) P
1=0

t-i

>
N for t ®

and P, = P(w) =1 .

0

The unknown coefficients Py Q4 and D can be calculated by algebrajc operations

from the Ji's.

the agymptotic series for ¢ and J into the differential egquation, by formal

differentiation of ¢

t (see Wasow (1965)).

We get an algorithm for the calculation of these coefficients by inserting

and by comparing the coefficients of the corresponding powers of

For an arbitrary matrix B let djag(B) denote the matrix which has only zero off-

diagonal entries and the same main diagonal as B .

-10-




In the case =0 we find D = diag(J1). For a > 0 we pursue in the following
way:

1) Set Qq := diag(J1) and let ;1 be the solution matrix of the equation:

Pidg - Jg Py =9y -
with diaq(51) = 0 . This equation is uniquely soluble because the diagonal elements of

Jy are distinct.

2) ;k and Q, are determined recursively. Set
k -1 - -
- - ‘
0 diag(z z 1 (3, By =By 9 + 3 for 2 <k ¢ a

and let P with diag(;k) = 0 be the solution matrix of:

X
P Jp - Iy B = . .{' \ (3, Py ~ B Q)+ (3, Q) .
“ -~ ~
3) Set D :=diagl [ (3, P . =P . 0)+3T ).

L =1

The matrices JO, LI § determine Qo""’Qa and D . In the presence of eigenvalues

a+1

of A(®) with a real part zero it is therefore not sufficient to know A(®) = Ao in order
to determine whether the fundamental solutions which correspond to these eigenvalues are in
C{({1,2]) or not. More (at most a+2) coefficients of the series expansion of A{t)

have to be known. Moreover an eigenvalue with real part zero can produce a basic solution
which is exponentially increasing or decreasing, algebraically increasing or decreasing,
constant or undampenedly oscillating as t approaches infinity. So the i-~th basic
golution is in C([1,®]) if and only if:

qi(t) di

(3.18) lim e t exists.
(22

-11=
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Lentini and Keller (1980) treated the case a = 0 and D, J, = 0 where D, is again the

diagonal projection onto the direct sum of invariant subspaces associated with eigenvalues

of J, with real part zero (D_, D, are also defined as in Chapter 2). Under this

assumptions a zero eigenvalue of J, generates a solution which has a power-series

expansion in t™! without an exponential and algebraic factor. Therefore it is sufficient

to investigate the system
(3.19) vt o~ t° 3, v =0
and to apply a perturbation approach.

Let ;0 be the number of solutions generated by imaginary eigenvalues of g

fulfilling the condition (3.18) and let Bo be the projection onto the direct sum of

invariant subspaces associated with these eigenvalues. Then the general solution of the

homogenous problem (3.13), (3.14) is
(3.20) w = #t)d  +D)E , Eec.
Now we have to determine a particular solution up e C([1,%)) .
In order to do this we denote by Dgy for 1< i< r, the diagonal projection onto
the eigenspace associated with the i-th imaginary eigenvalue of Jg + Dpy has only one
nonzero entry in the (r, + i)-th column of the main diagonal.
Now we impose conditions on f:

(a) £ e c((1,»]) ,

-1 -1 kg
(b) Dy, P (t)E £(t) = ¢t FOi(t) e c(l1,»])
(3.21) artek,
if |re q ()] = o(t ) and Req_ ., % o0
+ +
for i = 1(1)ro y 1 € ki <a
wQ=1=-¢

(e} D_.P (DEEL) = ¢t iFOi(t).

0i

FOi £ Cb((1,¢)], Ei >0 if Re qt++ 5 20 .

-12~
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Therefore we require at most that

. (3.22) e = o(e” %178 €>0 .

Now we define:

. (3.23) a) u_=u_ +u_ +u_ , (b) u = ) u
(a) up = Hf, up+ = Hf, “p = Hof, u _ = H_f,
(3.24)
(b) u_ =H_f
Poy 0i
and
(3.25) u, (&) = 8(t) [ 0,67 (218% £(s)as
+ L]
(3.26) u, (&) = 9te) [* 0 67" (a)s%  e(e)08
- ]
t -1 a_-1
(a) o(t) [ Doy (8)s'E f(s}ds , if (A) holds

o0

(3.27) u_ () =
Fo1 t -1 a -1
(b) ott) [ Dy, ¢ (8)s°E f£(s)ds , if (B) holds

8
where:
(a) Re qr++1(t) + ® or (Re qr++i = 0 and N > ~Re dr++i)
(B) Re qr#+i(t) + ~» or (Re qr++i = 0 and € < ~Re dr*+i) .

Then up(') exists and fulfills the linear equation:
-1
Jo(0, + D_)up(“’) = -(D_ + D_)E f(=)

We prove that up is continuous in t = ®» , the proofs for up and up
+ 0 -
Using Theorem 3.1 and (3.28) we get
u (1) = p(e)eP (8 (B 5 0B DALY e e (e as .
) > ¥
Looking at the i-th component of Pq(t)up (t) we find,
+

a, () - q,(s) | 4,
(3)

" o en, = [te s2e N (mE " F(s)) ds
p, i 2 i

Applying del'Hospital's limit theorem to

are similar.

[

pry




-q,(s) a=d _
[fet s e e s

g, (t) = =, (5) -4,
e t

we get because of the convergence of the integral in the numerator

e wE e en, '),
(up (®)); = lim g (t) = lim = = Y .

+ = e -ql(t)t- -azx i

We have used that P(t) = I + 0(t™ ') and p~'(t) = I + o(t™?) are continuous in t = ®

As in paragraph 2 we substitute u, + up into the boundary condition:
(B,E4(1)(D, + D) + BED, )L = 8 - B1Eup(1) - B.E“p(") .

There Soo is the projection onto the direct sum of invariant subspaces associated with

those imaginary eigenvalues of J, . which produce basic solutions which do not vanish at

infinity.

Theorem 3.2. The problem (3.1), (3.2), (3.3) under the assumptions (3.4), (3.5), (3.10)

has a unique solution y for all £ fulfilling (3.21) and B eR ~ if and only if
rdnk[B1E¢(1)(Do + D)+ BwEDool =z, +r_

where B, and B are (;0 + r_) x n matrices. This solution depends continuously on

-~

-1_-1
B, (o, + D_)JE P f and F, where F; fulfills Dy;Fy = Fy:.
For the proof of the continuity statement we need

Theorem 3.3. If £ fulfills (3.21) then the following estimates hold for t 3 6:

-1_~-1
. 1 < P | .
(3.28) (H+f)(t)| const. ID P E fl[t'u]
If Y » 0 then:
-y Y, =11
(3.29) MH_£)(t)) € const. t " max ds D P E f(s)l .
§<g<t
For i = 1(1)r°:
If Re qt+ P + +®m  then
(3.30) '(HOif)(t)l € consgt. IFin[t,Q] .

e




If Re QU ;" 0 and € > =Re dr .1 then
+ +
-ci
(3.31) I(HOif)lt)l < const. t 'FL'[t,-] .
If Re + - and Yy » 0 then
%, o+t
(3.32) H(Hy ) (€)1 < const. t' max la'P (8)1 .
§<ast
If Re qr i £ 0 and e1 < -Re dr . i then
+ +
—ei
(3.33) I(H01£)(t)l € const. t IFi'[G,t]
If Re 9 4y £ 0 and ei = -Re dr i then
+ +
-ei
(3.34) I(HOif)(t)l < const. t kntlrills't] .

All constants are independent of § and f .
We prove estimate (3.30) and the others are proven quite analogously.

From (3.12) and (3.27) we derive

-Re 4 +a-k
r

PR i

f’ exp(-Re o ,(s))s ds

t +

< o
IHOlf)(t)l const gy dr s lpiilt,ﬂl
+
exp(-Re q ()t
+
att=k,
Applying del'Hospital's rule and using |[Re g (t)] = o(e ) the estimate (3.30)

r + 1
+
follows. Herewith Theorem (3.2) is proven completely. An inhomogenity f fulfilling

(3.22) produces a particular solution which decays at least as fast as € int.

Now we again investigate exponentially decaying inhomogenities.

-

as (3.27a), H as (3.27b) no matter whether

We define ﬁ_ as in Chapter 2 , i 04

04

(A) or (B) holds. Of course the definitions make sense only for inhomogenities which make
the appearing integrals exist.

We assume that

p(t)tB

(3.35) f(t) = e F(t), Fcch([‘l,”)), B € R

-15~




t + »,

where p(t) is a real polynomial of maximal degree a + 1 and p(t) + == for

We split up the operators H_, ﬁ_ into H_j ' ﬁ-j by substituting the projection D_

by D_j (for j = 1(1)r_) which is the projection onto the invariant subspace generated
by the j-th eigenvalue of Jo with real part smaller than zero.

Theorem 3.4. Let (3.35) hold. Then the following estimates can be derived for t » 6:
Bra+1-L

(t) i

Y(H . £)(t)l < const. e "'t IF

(H_y 1) (6,t)

if p(t) - Re(qr+ r + j(t)) + +o and li is the degree of

the polynomial p(t) ~- Re(qr+ + , + j)

(3.37) L _£)(£)1 < const. eP!T)O*E*) g,
=] [Glt]

if p(t) =Re( qr+ + 2 . j(t)) and 8 > Re(dr+ + 2 + j)-a-1.

(3.38) L £)(t)1 < const. eP{TeAEHY ot im
=] [6,t]
if p(t) = Re( {t)) and B = Re(d J)=a-1
qt+ AE P r T+
(3.39) LM £)(t)t < const. eP{E1*BT gy
=) [t,>]

if p(t) = Re(c;!_+ . 2 . j(t)) and B8 < Re(dr+ + z, . j)—a-1.

~ p(t) Brat+i-4 .
3.40 ] I < . ]
( ) (H_jf)(t) const. e t (33 [,
if pl(t) - Re(qr tr o+ (t)) » -,
+ 0 J

The eatimates (3.37), (3.38), (3.39) are alsc valid if H-j respe E-j and the index

r, + rg + ) are subatituted by H-j resp EOi and the index r,+ i for i= 1(1)r0 .
The proof of Theorem 3.4 is quite similar to that of Theorem 3.3.

As in the constant coefficient case exponentially decaying inhomogenities produce
particular solutions which converge with the same exponential factor, only the algebraic
factor may change and £&nt as a factor may appear. If the inhomogenity f contains

{2nt)® with s ¢ N as a factor then all derived estimates are valid if their right hand
sides are multiplied by (int)s. This follows by direct estimation of the appearing

The operator which produces the best

integrals and by using the Theorems 3.3 and 3.4.

Nt
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order of convergence according to Theorems 3.3 and 3.4 and which is composed of the

H is again denoted by H. fThe composition of H depends

operators H+, H. ., H_,, H-i’ _s

04 0i

on the decay properties of f and on Jo, J1, eees | Ja+1 .

We want to weaken the condition (3.6) which is a very strong assumption on A(t). The
basic idea for this is that the determination of the matrices QO' eee, Qa , D only

requires the knowledge of Ao, e Aa+1 while the matrices Aa+2’ se+ do not influence
the exponential and algebraic factors of the fundamental matrix, they only influence the
power series factor P(t).

We assume that

Al 1) ec®™(ro, 1), 851

[
(3.41)
A€ C([1,%])
and therefore we can write
-1 ver -a-1 ~ ~ ~a-2-8
(3.42) A(t) Rgtt A+, + t Aa+1+ A(t) ,A(t) = a(t)t
where a € cb([1,~)) and B >0 .
The equation

y' = Ay + E(8) , t > 1, yeclit,=])

where f fulfills (3.22) can be rewritten as
a + 1

(3.43) v o= 20T Ay« Blay e,y e cinen.

i=0
The homogenous problem (3.43) with f = 0 has the general solution

~ -~ n
(3.44) Y E o(Do +D_)E +E H1Ayh, EeC
where E transforms A, into its Jordan form and E¢ is the fundamental matrix of the

unperturbed problem

yo=t (1 Aty .
i=0
Now let
(3.45) o1 By + o)1 = pore%e™ ™) < prero (6), poe clir,en
ﬁ1 {s composed so that inhomogenities which decay as t-a-z‘soh(t) produce fast decaying

particular solutions regqarding Theorems 3.3 and 3.4.
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From (3.44) we get the equation:

(3.46) ‘ (1 - EHIA)yh - 30(00 + D )E
for which we take as basic Banach-space:

(3.47) A, 5= {ulu(e) = Ult)o, (t), Ue Cb([6,'))},lulo g = Wl

oy iy (6,

1f oh(t) 2 1 then we set Aah,5 - C([§,®]).

We get the estimate

< const. 6-’-Bln6 < -

(3.48) 1H Al =  max Il-l1)\yhlahl6 21El

17 0,.,68
h lyhldh,G“

if § 1is sufficiently large. Therefore (I ~ Eﬁ1;)-1 exists as an operator on A 6

and for £ ¢ Cn:

1

(3.49) y, = (1 = 88 %) 'Ea(5 + D_1E = y2(By + 0_)E € A

h'G )
As particular solution yp of (3.43) we set,

(3.50) Y = ERjAy  + Bif .

The inhomogenity £ fulfills

a(t)) a+1+d ate) ,

(3.51) 1£(e)1 = oftde and o () = +™ ane o

and ﬁz is composed so that (ﬁzf)(t) decays as fast as possible with regard to

Theorems 3.3 and 3.4. Then
(3.52) H(H £)(£)1 = o(g (t))
2 P

ﬁ3 is composed to make particular solutions belonging to inhomogenities which decay as

t-q-z'qu(t) decrease as fast as possible. As basic space we now take Ao s and

-~ p
conclude the invertibility of (I - EH3A) on Ao 5
p'
with & gufficiently large and get

~ ] -
(3.53) yp = y(f) = (I - EHBA) EH f € Ac .6

P

2
Obviously

(3.54) y(t) = g (£) ¢y () ¢ c18,%))

Ly

o

anc i

L “d »




holds. By substituting H , which is defined by (3.24), for H in (3.44) it is easily

1
shown that the solution manifold vy, (with the parameters (30 + D_)) is unique in

c([8,=)) , because A, s € C([§,»)) and because the solution space is
hl
£, + r_ dimensional. Therefore y defined in (3.54) is unique in c([6,#)) (as

manifold).

A e e

In order to get the solution in C({1,®]) we solve the 'regular' problem:

(3.55) v o~ t'at)y + () 1< t<d
(3.56) ¥(8) = ¥ (8) +y (8) . !
From(3.44) and (3.49) we get, using the expansion .
© ;
x-""= § & for 1ar <1 ij
i=0
the following estimates which hold for t » § : ‘i
(3.57) 12(e) - Bo(t) (B, + D)1 < const. 7' tnt ¢ g (2) :
'
and 14
(3.58) POWEN (£) = E(H,£)(£)) € const. €71 F tnt + o (1) . | 4

Theorem 3.2 remains valid if E0(1)(5° + D_) is substituted by w2(1) where wE(t) has

been continued to [(1,%] .

™~




4. Linear Variahle Coefficient Problems - General case.

In this paragraph problems of the form (3.1), (3.2), (3.3) fulfilling (3.4), (3.5),
(3.6) but not (3.10) are investigated. So we assume a general Jordan-structure of Jg in
the block diagonal form

(4.1) J_ = diag(J;,Jo

- + 0
o O,Jo), dim(Jo) L dim(Jo) r

o' dim(Jo) =r_
+ _0

where JO,JO resp. J. contain the Jordan blocks which are associated with eigenvalues with

0
real part greater, equal resp. smaller than zero. As in the case of distinct eigenvalues
of J, we determine an asymptotic expression for the fundamental matrix. This expression

is given by Wasow (1965):

Theorem 4.1. Under the given assumption on J(t) there is a fundamental matrix which has

the form
o(t) = p(£)ePR(®)
where OQO(t) is a diagonal matrix:
1 2
a+1-— a+l= =
ta+1 € N P
ott) = daglyy) 79+ Q) ST t % platt)—2 ©+ °°°
2 1
t P
* Qp(a+1)-2 2 + Qp(a+1)—1 t

with some p € N, , D is a constant matrix in Jordan canonical form and

P(t) = P1(t)92(t)

where
o
P(t)~1+ J pott, 1w
1 14
i =1
and
o0 -.!'.
Pty ~ ] eyt P, t
i=0
The (diagonal) elements of Q(t) which correspond to a particular Jordan block of D are
equal. Therefore tD and eo(t) commute. Moreover the block structure of D is a

subdivision of that blocking of Ta which is obtained by cathering all Jordan blocks of
I belonging to the same eigenvalue. Also P,(t) has a block structure which is

identical to the above mentioned blocking of Jg »

-20-
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1
Contrary to the case of distinct eigenvalues A(t) is now a polynomial in tp,

where p is some positive integer and P(t) has an expansion in descending powers of

1

tp , D is no longer strictly diagonal, it is in Jordan canonical form and maybe the most

important difference is, that P(®) = P does no longer have to be regular which implies

20

that P(t)-1

may grow undoundedly as t » =« ,

However, the proof of this asymptotic expansion for ¢(t) given by Wasow (1965) is
constructive and therefore contains an algorithm for the calculation of P, D and Q . We
assume that J, has the different eigenvalues X1,--~,Ak and the block diagonal form
(4.2) 3. = diag(d),+e,35), aim@al) =

. 0 aqor ol mo—r
J; has the only eigenvalue Ai. Then the following algorithm results:

i

1) Substitute u = Ty(t)uy and determine

el Y
Tty ~ ] T? )
j=
80 that the resulting system
Bi £
3 1
split up into two separate ones. The first of them, which is r1—dimensional, has the form

He-18

a
L] ~
ug = t B'(t)u1 . Bt(t) Jo +

N I S B
S y(Blugyy with T, () ~ 3, + ; E Tt

where Uiq) is the vector consisting of the first r, components of u, . The algorithm

3 3
3 and 81

@
=t
for the recursive determination of T is given by Wasow (1965), paragraph 11.
The remaining (n—r1)-dimensiona1 system is treated in the same way. A r,-

2
dimensional system with Jo as leading matrix is split off. Finally we get k separate

systems
R AL s 3 -
(4.3) upyy = EJ (B, with I () %+j£1%“t.
The transformation
Y
(4.4) u="P(t)|
u

(k)

-21-




has the following form

k-1 It1 4+ see 4 ri s °
(4.5) P,(t) =T (t) n ® o s o o o o s s : s e v e o , P, (®) = 1
! ! i=1 ° M 1+1(t) !

Because of (4.3) k systems, where the leading matrix of each of them has only one
eigenvalue, have to be treated now.

2) We substitute

ta+1

gy = Ven POy )

and get
a
7 M = - = .
{(4.7) v(i) t (J(i)(t) AiIri)v(i) for i 1(1)k
The leading matrices of the systems (4.7) are now J; - Airr having the only eigenvalue
i
0 .
3) We apply so called shearing transformations
(4.8) Vi) = S(i)(t)"(i)
where
-9, , =29 -{r.-1)g

(4.9) 54 (t) = atag(1,¢ e e 101y,

with g; rational and 9; 2 0 to the systems (4.7). The g; should be chosen so that
the leading matrices of the resulting systems, which have W) as dependent variables,
have more than one different eigenvalue or if not possible for a certain i , so that the
rank of this new i-th system is smaller than a + 1 or that this systems splits up into
separate subsystems.

Wasow (1965) showed that it is always possible to achieve one of these
simplifications. 1In order to get systems where only integral powers of the independent
variable occur we substitute

1/(gi-u-1) 1/Pi

(4.10) x, = Py ¢t for 1 = 1(1)k

where Py is the smallest integer so that 94Py is a natural number. Then we get systems
of the form

h

' - i
(4.11) w(i)(xi) = x C(i)(xi)w(i)(xi)

-22-




where |

@
4 -3 |
4.12 h +1 - -1 ~ ] ] .
( ) (a) ;= fa 9;0p;=1, (D) C o (x) jEocmxi ‘
4a) If C?i) has only 0 as eigenvalue then we have reduced the rank of the system or it
!
splits up into separate subsystems of lower order. Applying more shearing transformations (

to (4.11) we end up with a system whose leading matrix has either more than one different

eigenvalue or has rank equal to 0. In the second case we have a gystem with a singularity )

of the first kind for which the fundamental matrix ¢(1)(t) has the form ‘
D @
. (1) - 3 3 !
(4.13) $ 4y 8) =B (e)e T, R () , z Op(i)t o

and D(i) is a constant matrix in Jordan canonical form (see Wasow (1965)).

4b) Now we assume that c?i) has at least two different eigenvalues. Then we trangform
0 ~ 0

C(i) to its Jordan canonical form C(i)

(4.14) 0 g0 !

o T Ewna F .
and substitute

(4.15) “(i)(xi) = By z(i)(xi) -
~ t
getting a system whose leading matrix is C?i) , that means in Jordan form ’
h
i~
' -
(4.16) z(i)(xi) Xy C(i)(xi)z(i)(xi) .

S5) We apply the transformation explained in 1) to the system (4.16) in order to get
separate subsystems of lower order whose leading matrices have the only

eigenvalue . By the means of 2) we normalize these systems so that their leading

(1),
J
matrices have only the eigenvalue 0 . These transformationg split off the factors
h1+1
x
(4.17) exp(u(i)j—;I:T— ) for i = 1(1)k .

Resubstituting In (4.10) and using (4.12)(a) we notice that the argument in (4.17) is of
a+1-g 3
the order t i that means of order lower than ta*1 which is the order of the !

argument of the first exponential factor because if g9y = 0 the system remained unchanged.

Applying another set of shearing transformations 3) we arrive at 4a) or 4b).

=23~




6) So a finite chain of all the in 1) =-5) described transformations result in a set of
one dimensional systems and systems with a singularity of the first kind. Setting

-m -
p=p where p in the smallest common multiple of all the p's used in the sequence of

shearing transformations, and m is the number of these transformations which split the
system into a set of systems described above, we get the formula for the fundamental matrix

¢(t) given in Theorem 4.1 by taking into account (4.13). Moreover we get:

© -3
m N

= = J p
(4.18) P, (%) (121Si(t)EiP21(t))P4(t). P () =1+ j Z 1P21t

and the Si(t) are composed of submatrices S(ij)(t) defined in (4.9). The Ei's are
regular and P4(t) is derived by solving the systems with singularities of the first kind

using (4.13).

We define:
m
.19 = )
(4 ) P3(t) 1f1 si(t)EiPZi(t)
R -1 -
An estimate of P3 {t) can be obtained in the following way.

Let Dy be the projection onto the direct sum of eigenspaces associated with the

eigenvalue Ai of Jo . Then

g, g, g
12 + i3 oot im )]

[(r -1)(q + — cee
i 11 Py Pi4Pyn Pi1° " Pime1

(4.20) 'P;1(t)01' < const. t

1

holds. The sum in the exponent of t is derived by estimating s; (t) and
by taking into account the block structures of the EI1 and P;;(t) * Pij

and 915 are ag in (4.10) and represent that sequence of shearings starting off from the

i-th r;-dimensional suhsystem and giving the largest exponent in (4.20),




For this sequence we can calculate the ranks of the corresponding secuence of
. subgystems as in (4.12)
CL N
11 Piqthyg - 91!
h,,+1=p (h _ +1-gqg,.)
(4.21) .12 127141 12 &
- + ~ .
P T P Py T 9y ;
!
By assumption h1 n + 1 2 0 holds and we get recursively:
g q :
(4.22) a+1>gi1+£+---+——'f':‘§— '
Pyt Pygr"" Py et

s

and therefore the estimate
-1 (z,=1)(a+1)
IP3 (t)DiI < const. t

———————

:tin S

holds.

The basic solutions wi with ¢(¢t) = (¢1(t),~-°,w1(t)) fulfill

el

qi(t) di ji
(4.24) lwi(t)l < pi(t)e t “(2nt) , P, € c(l1,»]). . o

Eigenvalues of Jo with positive real part produce exponentially increasing, eigenvalues ‘H
with negative real part produce exponentially decreasing basic solutions. Imaginary
eigenvalues of Jy can produce exponentially and algebraically increasing and decreasing j
constant and oscillating and logarithmically increasing solutions. The asymptotic

behaviour of a particular basic solution vi can be determined by the knowledge of Q(t),

D and P --',Pm where my is sufficiently large. Therefore the solution of the

OI
i
homogenous problem (3.16), (3.17) (under the assumptions of Chapter 4) is:
n

-

(4.25) w (t) = $(e)(B  +DIE, EecC

where SO and D_ are defined as in Chapter 3.
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Now we construct a particular solution vy of the problem

(4.26) u - c“a(t)up + %5 ) 1<t cw, £ecll1,2])
(4.27) w, € CCl,= .

We substitute

t
vp+( )
(4.28) u (t) =P _(t)v (t) and v (t) = v_(t)
P 1 P P Py
v (t)
|
and define
t)
vp+( 0
u (t) = P1(t) 0 y u_ (t) = P1(t) v_(t)
P, Pqy Py
(4.29) 0 0
0
up-(t) = P1(t) 0
(t
vp )

so that the definitions (3.23a) and (3.24a) hold. We get the separated problems

v v
a + + 0 0 - -
v = ¢ (diag(J, + J (t),J, + 3 (t), J, + J (t)) v +
Py 0 0 ] po
v v
P P_

-1 -
+ t°p1 (6 (e

where J+(t), Jo(t), J7(t) have an asymptotic power series expansion in

t-1

Weiss (1980a,b) as solutions of the operator equations:

o i ~1_-t
(4.30)(a) vp+ HJ vp* + H+(P1 E f)‘_
.- s =11
4,30) (b v =HJVvV + H(P_E f)
( )(b) P S _( 1 -

without a constant term. We define the block components vp ,vp as in de Hoog and
+ -

s S

g o
\

; Ry 4.1")"_:}:: :

.

-




i
]
|
|
: -1_-1 -1_-1
i where (P1 E f)+ resp. (P1 E f)_ are the first r, resp. the last r_ components
,‘!" - a -
F of P,E ¢ and H+, H_ are the operators defined similar to (2.11).
+
- +
: (4.30)(c) (H+g)(t) = ftexp(;%1 (ta#1 - s® 1))sag(s)ds
3 @ L
~ t J; a+1 at+1 a
(4.30)(4) (H 9) () = f exp( ey (t -8 ))s g(s)ds
[
for € C([1,%]).
From (4.30) we derive
(4.31)(a) v = -aa) T e e e o8,
* P, + + 01 + ’
So= =10 -1_=1 :
(4.31)(b) vp =(I-HJ) H_(P1 E f)_€ C([6,%])
with § sufficiently large. The proof of the invertibility of (I-H+,-J+") is given in
de Hoog and Weiss (1980a,b). Again we get: H
t
+.-1, =1 -=1 -1 !
(4.32) (a) v (=) = (J ) (E f(=))_, (b) v_(®») = (J ) (E £f(=)) I
P, Y + pP_ 0 - .
because J*(“) =0 and J (®») =0 . f
!
Now we assume that for some € > 0:
-1, - . \oTlat1) =€
(4.33) DOP1 (t)E f(t) Fo(t.t ' FO € Cb([1,¢))
holds, where r is the largest algebraic multiplicity of the eigenvalues of Jg with real
part zero.
Ssor is defined differently to r in Chapter 2. However, more sophisticated
assumptions on f could be used (similar to (3.21)) but we will use (4.33) for simplicity.
The system
(4.34) vi =23+ SO
P 0 P
0 0
is composed of separate systems, each of them associated with one imaginary eigenvalue of )
Jo and ; is the maximal dimension of these subsystems. ’
We take one of these (inhomogeneous) subsystems
. (4.35) v =% (t)v

(1) + e oE o) .

Py (i) Py (1) 0(4)

=27~
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-

(ty: = (o) E(e))

where f(i) 0(1) consists of the corresponding components of the
inhomogenity P"(t)E“f(t)- The leading matrix J; of J(i)(t) has the only eigenvalue
Ai with Rex1 =0 .
Now we apply the transformations
1

(Xitq+1) Py

(4.36) v = exp|———) * 5, ., (t)w s X.= c(i)t
Po(i) o+ (77 Py (1) *

(4.37) w (x,) = E z (x,)

Po(4) i (i) Py (i) i

as defined in (4.6), (4.9), (4.10) and (4.15) and get

h h..
i~ i .
(4.38) z! (x,) = x, C (x. )z (x,) + x,”g (x.)
Py(y) i i 7)1 6(i) i 1 (1) 74
where
5
- X, P.9 X, p A, x (a+1) - X, P
1 yPi% -1 -1 1Pt 115’1 . i \Pi 4
(4.39) gy, (x) = (Grgy) By, 80, ((Gy) el G7lEm £y () 7 e
e
From (4.23), (4.33) we derive: _
- 'Pie“rpi(a+1-qi)
- l‘ . L]
(4.40) Ig(i)(xi) const xi
If the leading matrix of the system (4.38) has at least one eigenvalue different from zero
then the separating transformation
1 L
z =P (x )z » P (@) =1 H
Po(1) 2(i) i pO(i) 2(1) .
can be applied. All resulting sybsystems, whose leading matrices have eigenvalues with '
real part different from zero can now be solved by the means of (4.30), (4.31) because the
new inhomogenity has the form
~ -1 -
(4.41) g(i)(xi) Pz(i)(xi)q(i)(xi) € Cl[1,%)) .
For all other subsystems this sequence of substitutions is repeated as long as we arrive at ﬁ

systems whose leading matrices have eigenvalues with real part different from zero or one- )
dimensional systems or we arrive at systems with a singularity of rank zero. In the second
and third cases only eigenvalues with real part zero have been split off therefore the

inhomogenities do not contain exponentially increasing or decreasing factors (see (4.39))
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e o

and therefore every inhomogenity 99 which occurs in this sequence of transformations

fulfills after resubstitution to t as independent variable:

1

(4.42) 1g,(£)1 < const. |p;'(t)nilt°"’ IDOP:1(t)E-1f(t)I < const. t ¢

because (4,22) holds.

A particular solution for one-dimensional systems can be found according to Chapter 3,
80 we just have to treat systems with a singularity of rank zero.

We want to solve

1 1 ~ 1 ~ = 1

' = (=~ - - = -—

(4.43) zp (x B+ o B(x))zp + % go(x), B(x) = B(x) "
(4.44) zp(x) zp(x)x (&nx)~, zp € cb([1,~)), j E Ny ‘§
“:‘
- A

where B is a constant matrix in Jordan form, B ¢ C([1,%]) and 99 fulfulls (4.42).

Let \\\1:\\\\\\ Y
(4.45) B = diag(B1,'--,Bq) » B = bi\\\\l\ ,i=1(1)q 4
s
’

and let Dl be the projection onto the invariant subspace associated with b;.

Then we define

holds where j = max (dim (Bx)). Therefore we get from (4.46)

‘ ‘ g

(4.46) z, = Gsz +Ggy . G =G+ cee+ Gq
and ‘J
(4.47)(a) x° ]x D""s-B-I g, (s)ds, b, £ -€ .
s 0 i j s
(Gigo)(x) = ' i
(4.47)(b) <2 " Dis-B-Igo(s)ds Pob > -e ;
x 3
It is easily checked that for x > § ;
{4.48) 1(Ggy) (x)1 < const. (2nx) Imax( max lg (e, x ° ¢ max Issgo(s)l) Jj
8€ (x,%®] 55[61’(] !
i
(4.49) zp = (I - GB) Ggo
zp fulfills (4.44) because of a contraction argument similar to that applied ir (3.47),
(3.48), (3.49). If g (x) = o(x S(anx)?) then the right hand side of (#.48) has an .
|

additional factor (lnx)i.
4
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After having performed all necessary resubstitutions we get a solution vp (t)

0
fulfilling vp (@) = 0 . Defining L7 DOO in the same way as we did in Chapter 3 we get
0
Theorem 4.2: The problem (3.1), (3.2), (3.3) under the assumption (3.4), (3.5), {4.1) has
- r +r
a unique solution y for all £ fulfilling (3.21)(a), (4.33) and for all B € R o= if
and only if
rank[B E¢(1)(D, + D) + B_ED ] = r, + r_

where B, and B, are (;0 + r_ ) x n matrices. This solution y depends continuously on
B, (D, +D)E™'R,™Yf and F; which is defined in (4.33).
The proof is complete if the continuity statement is proven.

Theorem 4.3, If £ € C([(1,2]) and (4.33) holds then the following estimates hold for

t > §:
(4.50) 1(4,£)(t)1 < const. ID P, E £l
. N const. P4 (t,]
=Y Y, =1 -1
(4.51) I(H_f)(t)l < congt. t ¢ max Is D_P1 (8)E £(s) for Y > 0.
s € [§,t)
3o -c e+(a+1)T, -1 -1
1(H £)(t)! < const. (Ant) * max(t max Is D P (8)E f(s)},
(] 071
se(§,t)
(4.52)
max 18'%*V%p 271 (a2 e (s 1)
01
st
where jo = max (dim(Di )} and Di are the Jordan blocks of the matrix D in Theorem
i k 13
4.1 for which %he corresponding polynomials qi (t) fulfill Reqi (¢) 20 . All
k k

constants are independent of § and f .

Proof., From (4.31) we conclude
a0

SR I SRS S |
(4.53)(a) U, () T Z 0<(n+a i 250 e
(4.53)(b) v (o= 3 s ee e
P i=0 - -

for & sufficiently large.

=30~




H_resp H_ fulfill the estimates (2.15) resp., (2.17) and therefore we get:

(4.54) (a) tv_ (t)t € const. max ID+P:1(5)E-1f(s)| ) (%)i
P, se(t,®] i=0
1 T ot
(4.54) (b)) Iy (£)) < const. ' max 1s'D_P, () (et ¢ ] )
P e (6 ,t) i=0 £
|

i€ & ia so large that 130 o <Y ana 137N <%5. The estimates (4.50), (4.51)

follow by using (4.29) and (4.52) follows from the derivation of v‘p and from (4.48),

[

(4.49). K
Theorem 4.4 implies that an inhomogenity £ fulfilling ;
(4.55) £ty = DTG0 te,  Fe c ((1,=)) !.
produces a particular solution Hf for which the estimate ‘i
(4.56) 1(HE) (£)1 < const. t-e(lnt)30+leI[6,D] ' 4
holds. E,
Now we agsume inhomogenities of the form {{
(4.57) ) = P OV baneytece), Fec e

1
plt) 8 P
t F(t) fulfills (4.33) and p(t) is a polynomial in t© with leading temm

and e
tu+1
P, a+ .« It is possible to construct a particular solution RE = H+f + ﬁof + ﬁ_f
fulfilling
- (t) B+T(a+1) Io*t
(4.58) (a) V(Hy ()1 < const, e P10t (tnt) © AFN )
r
- - j_t%
(4.58) (b) A0 < const. e EHO D 000y Ty

where k is the maximal algebraic multiplicity of the eigenvalues of Jo with negative

real part and j_ is the maximal dimension of Jordan blocks in DD_ « To outline the

proof we assume the system




(4.59) v o=t + T v+ t%(e), T_(=) = 0

where 3_ has an asymptotic series expansion and J_ has only one eigenvalue A with

ReA < 0 and g(t) fulfills (4.57). If <=Rel + Repo > 0 we determine a particular

~
=

solution vp by applying (4.30)(b) . If -ReX + Repo < 0 we use the operator H_

- ~
- ~

instead of H_ in (4.30) where H_ is defined by (4.30)(a) with § ==, In both cases

the estimate va (t)! < const. ep(t)ts(lnt)le_l(

5,2 follows by a contraction argument
and by (2.19), (2.22). However, if Rel = Repo we perform the substitution of the form
(4.36), (4.37), (4.40) as long as we arrive at systems whose eigenvalues have real parts
different from the real parts of the corresponding coefficients of p(t). Then we apply
H_ resp. ﬁ_ « If Rep(t) = Reqj(t) where a4y is a polynomial in the exponential factor
of the fundamental matrix of the homogenous system (4.59) this sequence of transformation
either leads to one dimensional systems or to a system with a singularity of the first kind
(rank zero). The first has been treated in Chapter 3 and the second is solved by (4.46),
(4.47). Resubstitution and application to all separate subsystems corresponding to
eigenvalues with negative real part yields the estimate (4.58)(b). The estimate (4.58)(a)
is gained in a similar way.

Now we assume that the matrix A(t) of the system (3.1) fulfills

(4.60) a(d) e clornin

1
(o1 . § > 1
A€ C([1,»])

instead of (3.5), where z= max(;,i) is defined for the Jordan form of A(®) . Therefore,

(4,61 A(E) = Ay + €A+ eee w I LR, Ry = aeet(OTDE1E
(a+1)L
where a € cb((l,ﬂ)), B>»0 .

The system (3.1) can now be written as:
a62) oyt =g e s S Ay ER iy + s

- (a+1)L
By regarding (4.62) as a perturbation of

- (a+1)E i~
(4.63) vy=t% I Aoy + %
i=0 i

and proceeding similarly to Chapter 3 we find that
2max(j°,j_)

“1-8(2nt) o, (t)

(4.64) 1WJ(t) - E8(6) (B + D)1 < const. t
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where E¢(t) is the fundamental matrix of (4.63) oh(t) is defined as in (3.45) and 1

WE € C((8,2)) is the matrix fulfilling yh(t) = wf(t)(So + D_)§ , where Yp is the

general C({8,»])= solution of (4.62) with f = 0. Similarly a particular solution Vy(f)

of the inhomogenous problem (4.62) is obtained fulfilling
~1-8 ZNAX(jo,j_) =

{2nt) o (t) !
P

(4.65) H(y(£))(t) - E(HE)(t)} € const. t
where EHf is the particular solution of (4.3) which decays as fast as possible according
to Theorem 4.3 and (4.58). cp is defined as:

(4.66) L(HE) ()] = ota ().

Theorem 3.2 remains valid if E0(1)(50 + D_) is substituted by WE(1) where WE has been
continued to [1,%] .

If only an existence theorem for wg(t) is desired without taking care of the decay
properties then T =Y and B > -1 in (4.61) can be chosen. In this case the right hand
sides of (4.64), (4.65) do not contain eventually occurring exponentially decaying factors
in ah(t) resp. cp(t) . s

Moreover it is important to consider problems where the matrix A(t) defined in

(4.61) decays exponentially:

q(t)

(4.67) Ace) = a(titTe cae C (1), qlt) > -

Using the same methods as in the case of algebraic decay we get:

g o 2Rax(dned)

(nt) ch(t)eq(t)

(4.68) W2 (e) - Eb(e) (B + D)1 < const.

2max(30,3_) att)

YHEDL §ne) o (t)e

(4.69) Ly () (e) - E(HE)(t)l € const. t
Only the construction of the ‘particular' solutions has to be changed in order to get these
estimates.

Pinally the author conjectures that it is possible to change T to r defined in

Chapter 2 so that all statements made should hold with r instead of ¥ . Maybe someone

-

else is successful in improving the derived estimates.




5. Nonlinear Problems.

We consider problems of the form

(5.1) y' = tPE(t,y), 1<tcw, ace N,
(5.2) y € C([1,%])
(5.3) bly(1), y(=)) =0 .

From (5.2) and (5.1) we conclude that

(5.4) f(e,y(=}) =0 .

Now we define for a € Rn s xX,t € R:
(5.5) s (a) = {ye Ry - al < x}
- - n+1 -
(5.6) cftia)={(t,y) e R It >¢t, ye s, (a)}
and assume that

(5.7) f'fy € Clip(cx(1,Y(“)))

for some x > 0 sufficiently large.

(5.4) is a (nonlinear) system of equations from which y(®) can be calculated as a
n
1

solution manifold y(®) = y () , y e Sc R n1 € n, if the Problems (5.1}, (5.2),

(5.3) admits a solution. The dimension of this manifold -ny- can be calculated a priori

if we require for a solution point y_ that

(5.8) rank(fy(“,y“)) =n-=n,
9
(5.9) rank(fy(“,y)) <n- n, for y ¢ Sx(ya), x>0 .
Then there is a x; > 0 and a ny-dimensional manifold vy, (u) which fulfills the equation
n
(5.10) £(®,y (W) 20 for ueScR'

0
(5.11) Yo (U} € Sx1(y°) .
From (5.8) we conclude that n, equals the geometrical multiplicity of the eigenvalue zero
of the matrix fy(“.yn) .
However as practical examples point out, the assumption that fy(",y) does not
decrease its rank in y_ is too strong and therefore we regard n, as a priori unknown but

obviocusly the solution of the equation (5.1) determines n, for a practical problem.




Now we define

(5.12) A(t,u) = fy(t,yn(u))
and require that A fulfills (3.4), (3.5) so that
L2
(5.13) acay = I oAt for £ 6.
i=0 L

We transform Ao(u) to its Jordan canonical form Jo(u)
(5.14) Ay = BT GOE ()

and introduce 2z as new dependent variable

(5.15) E(ulz = y = y_(u)

getting

(5.16) 2t = t%30t,mz + %z, t,0) '

(5.17) zZ(®) = 0 . L

Here g

(5.18) J(ta) = E AL, WEW) i

and ?v
e

(5.19) glz,t,u) = B E(E,E(z + y (1) = 3(t,u)z

hold. The perturbation g fulfills the estimates:
(5.20) Bo(z, )0 < C (W) (IE(E,y, (W)N + 1z21?)
(5.21) lg(z1,t,u) - q(zz,t,u)l < cz(u)(lz1l + Izzll)lz1 - 22I
where Ci(u) depend also on the Lipschitz-constant of fy on cx(1,y°(u)).
We restrict L to subsets S c S which are defined as follows.
1) The projections onto the direct sums of invariant subspaces of Jo(u) , which belong

to eigenvalues with positive, zero and negative real part are constant for u € S.

Moreover the projections onto the invariant subspaces of Jo(u) are constant for u € s '

therefore r+,r°,r_,; are defined for Jo(u) as in the last chapters and are independent

of W€ E. h

2) YW, EQN), E-1(u) are continuous for u € § N




Let ¢(t,u) be the fundamental matrix of the (homogenous) Problem (5,16).

3) The same columns ¢i(t,u) of the matrix ¢(t,y) fulfill

-(u+1);-ei(u) ji
Iwi(t,u)l < ci(u)t (&nt) °, 81(u) >0

for all wu € s. Therefore there is a projection matrix D0 independent of P in S so

that _
-{a+1)r-c, (u) j

(5.23) 16t (D, + D) € Cu)t (2nt) = for uE S
holds. ro be the number of 1's in the main diagonal of D0 .

We require f to fulfill _
-2(u+1)r-ez(u)

(5.24) e,y (1)) € clnt Q€ ) >0 for pes

For u € E, £ € cn fixed we set
(5.25) (Y(z,0)) (L) = 4>(t,u)(D0 + D_J)E + (Hg(z,*,u))(t)

where H is as in (4.56) (with E = I). Regarding ¥(°,u) as an operator on the Banach
space:

= 3
-(a+1)r-¢ [¢] ® =
(AE,G = {zlz(t) = Z(t)t (&nt) ;s 2 € Cb([é' ))}1 lzle = |Z'[5,‘”])’

(5.26)
§ 1, 0 <€ = min(e_,e_ ).

Every fixed point z of y(+*,u) establishes a solution for all £ € c” . At first

maps Ae s on AE 5 for & sufficiently large because of (5.20), (5.23), (5.24), (4.55),
r

(4.56) .

Now we take a sufficiently large sphere Se(p) in As 5 with center
I

¢(',u)(D0 + D_)E and radius p and prove the contraction property of ¢ on SE(S)
Tolz ,u) = wizy )l = lH(g(z1,'.u) - 9(22"'”))'5 <

(5.27) .
- 23,
€ const(u) p*§ (&né) lz1 - zzﬂe

for z, ,z_ € sc(p) because of (5.21), (4.55) and (4.56).

1772

Moreover i{f 1z € sc(ol then

TWiz,u) - 0('.U)(Do + D_)Elc = ng(z,',u)le

(5.28) 23

< (const(u)+o)2- 6-€(£n6) 0

-~36-




Therefore V(z,u) € SE(D) if &8 is sufficiently large and from (5.27), (5.28) we conclude
that (*,u) has a unigue fixed point z € Sc(p) AE s for 6§ sufficiently large. The
[

construction of H implies that (Do + D_)P(G,u)-1z(6) = GD(U)eQ(G'u)(D0 + D_)E.

Therefore, for fixed u ¢ s , we have constructed a ro + r_ -dimensional solution

manifold in Ae s ! for § sufficiently large but fixed whenever ((D0 + D )E varies
R -
ry + r_
in a compact set K < C . In order to get more information on the asymptotic

behavior of the solution we now treat the important case:

(5.29) £(t,y (b)) 20 for t28, ues

and

(5.30) l@(t,u)(ao + Dl = e, BB T e
where

(5.31) qlt,y) + = for t + = and u € S

holds.

We define:

3
(5.32) ale,uy = BB 0,70
and set
(5.33) ($(z,0))(€) = $(t,u)(D, + D_)g + (Hg(z,*,u))(e), §ec" .

H is constructed according to Chapter 4 (with E = I) so that inhomogenities £ which

decay as oz(t,u) produce a particular solution Hf which decays as

7 max(j ,3j_) _
t(q+1)202(t,u)(lnt) 0 . We regard Y as an operator on the Banach space

(5.34) (g5 = lulu = otea)u, vec (18N}, tal =luk o ) .

The contraction mapping theorem, employed as in the case of algbraic decay, assures the

existence of a unique fixed point 2z in A

0,8
From (5.33) we conclude

(5.35) t2(t) - ot (D + b_3ek ¢ cant! ™ M e (e (aney

where j = max(3jq,3_).

It is easy to check that (°*,u) is also a ccntraction in a sphere around

0('.“)(00 + D) in Ao 5 * The uniqueness of the fixed point assures that
= '
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(5.36) Hgl(z,*,u) € Aa,&

for every fixed point 2z of ¥{(°*,u) in Ac 5" Therefore
’
(5.37) (W(z,u))(t) = o(t,u) (D + D_JE + ((H = Higlz,*,u))(t) + (Hg(z,*,u))(t)

holds. Because Hg and ﬁg are particular solutions for fixed z € Ao s ve get
’

(5.38) ((H = B)glz,*u)(E) = o€, (D) + D_)Y(2), Y(2) & "™ &
Choosing i

|
(5.39) £ =6+ y(2) i

assures that every fixed point of Y(z,u) is also a fixed point of E(z,u) (with

 different to £) and vice versa.
In general our perturbation approach does not give us all C([1,®]) solutions of the i

Problem (5.1), (5.2), (5.3), it only gives us all solutions, which decay at least as fast '

-(a+1)T-€
e (a+)r

as where € > 0 . This is illustrated by the example:
' 2

(5.40) y =y°, 1<t

(5.41) y € ¢{[1,%])

which has the solution manifold y = - »€>=1 and y =0 . Our approach gives

t+c

If -
(5.42) Yo, =0 3;(yu) =0, r=1
and therefore the fixed point equation
(5.43) y = Hy?

results. In AE'G the only solution of (5.43) is y % 0 , which is the only solution of

(5.40) decaying faster than e, i
1f fy(t,yw(u)) is not analytical at t = » but if it fulfills a relation of the j

form (4.61) then wg(t,u)(D_ + BO) respe. w(g(z1,',u)) defined in Chapter 3.4 have to be 1

used instead of E(u)¢(t,u)(50 + D_) resp. E(u)Hg(z,*,u). The results do not change. '}
The following theorem follows immediately:

Theorem 5.1. Let f fulfill a uniform Lipschitz condition in y on [1,®]. Then the Lf

problem (S.1), (5.2), (5.3) where (5.13) holds asymptotically has a solution .

y = y('.(B0 + D_)E,u) = E(u)z(-,(l;0 + D_)g,m) + y (u) for every root ((13o + D_)E,u)

of the equation -




b(E()2(1,(Dy + D_)E.u) + y (u),y, (4)) =0

-

r 4+xr +n

where (E,u) e C" xS and biR" + R ° +« Here z(t,(Do + D_){,u) denotes the

continuated fixed points of y(°*,n) with § ¢ c® . on the other hand, if the boundary

value problem (5.1), (5.2), (S5.3) has a solution y , so that y = y(®) ¢ Ae 3 for some
’

n

€ >0, then there is a u € R and a (Do +D)E ., E¢ c® 8o that z =

E () (y ~ v,) has the asymptotic expansion (5.35).
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6. Case Studies.

In this chapter problems from fluid dynamics resp. thermo dynamics described by
boundary value problems on infinite intervals are analyzed. These problems are represnted
by nonautonomous system of nonlinear differential equations. An autonomous problem,
namely von Karman's swirling flow problem has been investigated by Markowich (1980b). The
following equation represents a model for viscous flow past a solid at low Reynolds number:
(6.1) u"+;"5u'+auu'+8(u')2-o, §<x<c®, a>0
(6.2) wé) =0, §>0, u(w) =y>0.

The parameters and variables are described by Cohen, Fokers and Lagerstrom (1978). The
transformation
(6.3) Y, =u, y,=u , y=(y,y )'r

1 2 1772

takes (6.1), (6.2) into

¥y
(6.4) y' = = f(x,y)
- 5 - o -8 2
x Y2 T ¥, - Py,
(6 5) (a) {1,0]y(8) =0 , (b) [1,0]y(®) = U
(6.6) y € C([5,=]) .

Wa get y_ =y (U) = ( g ) and calculate

0 1 , 0 0
£ (X7, (0)) = + =
(6.7) 0 -au 0 -k
—————
A, (0) K

AO(U) has the distinct eigenvalues 0 and -aU and we get

(6.8) JO(U) = , E(U) = .

The transformation (5.15) with u = U results in the system

-40=-

)

b 3
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(6.9) 2 = + i au z + g(z,U)
0 -au 0 -x
a_(0) ENT])
0 1
(6.10) z(®) =0 .

1
The homogenous problem zﬂ = (JO(U) + * J1(U))zh has a fundamental matrix ¢(x,U) of the

form
1 0 1 0
(6.11) $(x,U) = P(x,U) —aUx -k
0 e 0 x
where
(6.12) P(x,U) = I + O(x" ")

holds. This follows from Theorem 3.1 and from the algorithm for the calculation of the

coefficients. Moreover

- 0 0

(6.13) Dp =0, D_=
0 1
holds and the fixed point equation
0 -
(6.14) z(t) = P(t,U) + (Hg(z,U))(t), £ € R
-alUx =k
e x &

results because we are only interested in real solutions.

glz,U) fulfills

(6.15) Ig{z,U)l < conat(U)lzl2

because f(x,y _(U)) = 0 holds.

Chapter 5 assures the existence of solutions =z(+,§,U) e A _ =
- €,8
= (ulu(x) =« “Canxv(x), U € ¢, (I5,#)) and from (5.35) we conclude:

0
(6.16) lz(x,§,U0) ~ P(x,0) I < c(u)x
-aUx -k
e x £

1-2k -2aUx P
(2nx)

Using Theorem 3.4 this estimate can be improved, so that its right hand side is of the

=2k =-2aUx
x e .

order Regubstituting we get
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-alx_ -k -2aUx_~2k
e x x

(6.17) wx,E,0) = U - (1 s 0 £+ ote Y., xee,
Since U ¢ R+ is given (6.5)(a) has to be used in order to determine £ ¢ R and the
problem is well posed concerning the number of conditjons as x=§ and x= o

The second problem is a similarity equation for a combined forced and free convection

flow over a horizontal plate (see Schneider (1979)):

(a) 2% + ££" + kxg = 0
(6.18) 0€ x ¢

(b) 2g' + £g =0
(6.19) (a) £(0) = £'(0) =0 , g(0) =1, (b) fi'(») =1, g(=) =0

The varjables and the parameter k are explained in Schneider (1979). For simplicity we
have set the Prandtl number to 1 . Because of (6.19)(b) we substitute
{6.20) f(x) = x +h(x)

and get the new problems:

(a) 2h"' + (x + h)h" + kxg = 0
(6.21) 0< x <o
{b) 2g' + (x + hlg=20
(6.22) (a) h(0) =0, h'(0) =-1, g(0) =1, (b) h'(w) =0, g(®) =0 .
Substituting
T
(6.23) ye=h, yy=h', y, =0, y,=a, y=(y,.¥,¥yY,)

we get the system




r -
‘ %
x
)
x
(6.24) vy X
y' = x -“,§(1<l';—)y3-5y4 = xf(x,y) , 0& x<«<w™
b4
1
- (1 + - Va4
- J
1 0 (o] 0] 1 0 1 0 0
(6.25)a) 0 1 0 0 y(0) = -1 + (b) y(®) =
o 0 0 1 1 0 ° 0 !
We only admit solutions fulfilling h(«) ¢ R therefore we require that
(6.26) y € C([0,»]))
holds. Prom (6.23), (6.24) we conclude
(6.27) Y, = ¥ (h,) = (h,,0,0,0) , h =h(®)ecR.
We calculate:
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0
£ (x,Y (h )) = + = h
(6.28) y Telle o o -1 - o o -= o
2 2 ho
-1 =
o o o /s o o0 o .
Aqg A1(h¢)
and
6.29 = E(h = di 1,1,1,- 2 )
(6. ) E = n) ag( TANALY) x .

The substitution E(h )z =y - Yo(h,) gives the system

&

TV
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6o o o o o 1 o
c 0o o o0 o 0o 1 o
(6.30) = = x * 5 Ry + n
: 0o 0 =% 1 lo o -5 o z *+ xglz.h,)
2
L
o o o -1 o 0o 0 -5
3o 3 (h,) = A (h)

Jo has the eigenvalues 0 with algebraic and geometric multiplicity 2 and - b& with
algebraic multiplicity 2 and geometric multiplicity 1 . Because f(x,y _(h_)) = 0 holds
we get

(6.31)(a) Ig(z,h“)l < C(hw)lzlz.

We have to set up the fundamental matrix ¢(x,h ) of the system

‘- 1 - (,1.,2.3 4
(6.31)(Db) zh x(Jo + = J1(h°))zh ’ zh (zh,zh,zh,zh).
Because of the simple structure of Jo + i J1 we do not have to apply the algorithm of

Chapter 4 , we can proceed in the following way.

The last equation of (6.31) is

4" e 21,04
(6.32) z, x(= '/ > x)zh .
It can be integrated at once giving
1, 2 Pe
4 "X -x
{(6.33) zh = e cC , CegR.
Setting c = 1 we have to find a particular solution of
h
3 - —= 1,3 4
(6.34) zh x(= A 2 x)zhd»xzh.
We take
h
-1 2_ =21 2
/4 X
(6.35) 3 2x X (4.1,
2
Integrating
(6.36)

rd




we find
h :
-Yxt - = x !
2 4 2
(6.37) z, =e x O(1) .
. 4
Analogously we integrate
1 2
(6.38) z, zh
and get
h
2 '«
v T Vaxt - x
(6.39) z, = e o(1) .
i The fourth column of ¢(x,h ) can be chosen as (z;,z:,z:,z:)T.
§
H In order to get the third column we gset C = 0 in (6.33) and proceed as we did.
FPinally we get the following fundamental matrix i:
( - i
x2 h, x2 h, g
- - —x -— - —x
1 x e Y %2 oxH et 2 o
x2 h» x2 h‘ln
-E o —x X =24
0o 1 e 4 2 otx™ e ¥ 2 xom '
(6.40) ¢(x,h)) = x2 h, x2 h, v
- - —x% -_— - = -
0 0 e 4 2 e 4 2 x2(1 - 15 ) i
x L
2 h i -
O S ‘
i 0o o 0 e ¢ 2
f - J .
1 .
- i
which we can write as in Theorem 4.1 :
# p 2(x/h,)
(6.41) $(x,h,) = P(x,h_)x e ;
where
R
- «45=~
4
}




1
(6.42) P(x,h ) = + x o(1)

(6.43) D= diag(1,x,1,x2)
2 e 2 b
ST e x = - —x
(6.44) Q(x,h_) = diag(1,1,e ¢ 2 , o ¢ 2
holds.

Similarily to the first example we conclude that there are solutions 2(x,£1,52,h“)

in Ae 5 which is now the space of all functions in C([§,®]) which decay at least as
’

x 47 onx , €>0 because r =2 and a = 1 holds. Moreover

~ —
0 x2
- = -hx
2(x,£,.€, h ) = P(x,h,) some 20T
(6.45) vz e ” R
4 2
xe 51
2 h
x ]
it T*
L X e 52 B
2—'-th
with h~'51’52 R results because the exponential factor e does not appear in

the fundamental matrix.
So we get the asymptotic expansions

2 h 2

X had X

S cEox, a7

(6.46) £(x) = x + h_+0(N)e 2 + o(x'e )
- x—z - :‘: x - ‘)ﬁ - h x
(6.47) gmy =-2e * 2 g ronfe 27

where the O0(1) in (6.46) depends linearly on 51 and 52 .

- 6~

&

e 2

]




E |
4 The constants (h-’£1'52) € R3 have to be determined from the three initial |
conditions (6.2%)(a).
1
The third problem to be analyzed is the well known Falkner-Skan equation {see for
example Lentini and Pereyra (1977)):
v 2 &
(6.48) "' + FfEf" + (1 - £ ) =0
(6.49) f'(w) = 1,
We do not pose any initial condition because we look for a solution manifold.
Because of (6.48) we substitute
i (6.50) f(x) =x+g9(x) , Yy=g, y=9", y3=gqg"
L3
: ]
T
(6.51) Y= (Yqr Y3r ¥3)
and get the system
-~ y2 T
“x :
3
Y3
(6.52) y' = x = - x fix,y), x> 6§ .
2 A
¥,Y, 2y, ¥, ;
-y, - — — 4
3 x X x
! ]
Moreover we require
(6.53) y € C([8,»})
so that
T
(6.54) y(») = (9.;0,0) [ 9 ™ g(=)
holds. We calculate if
0 0 0 0 1 0
1
£ (x,y (g )) = 0o 0 0 + - 0 0 1 .
(6.55) y == x by
o o -1 0 2 -q,
; Jo J’(g_)
j The linearized system is therefore hﬂ
1
' - -
(6.56) z) x(J0 + - J1(g“))zh

Because J, has the eigenvalue 0 with algebraic multiplicity 2 we apply the theory

developed in Chapter 4.

e s e

ki
;
;




At first we split up the system (6.56) by the transformation

(6.57) 2,uB)T, P(x,9,) ~ I + 12' Pi(ga)x-l

to get subsystems whose leading matrices have the only eigenvalue 0 resp. -1. (6.57)

z, = P(x,g Ju u = (u1,u

gives a system of the form:
o«

-1

(6.58) ut = x B(x,g')u ' B(x,g“) ~ Jo + 121 Bi(q’)x .
From Wasow (1965) we ccnclude that

0 0 Py1 b P2 0
{6.59) Pi = 0 0 sz ' Bi = bi3 bi4 0

Py3  Py3 0 0 0 bis
holds and that the recursion

i-1

(6.60) 3, B, - P = s-Z-o (P B, - J B - (-2, 1>0

with the last term absent for i < 2 and Jy =0 for k > 1 holds.
From the investigation of the perturbed system we know that only the coefficients Bg/
B,,By , By and B, influence the asymptotic behavior of the fundamental matrix because

{a +1)r = 4 for our example. (6.59) and (6.60) give

o 1 o o o 0
B,=| 0 0 0 . By,=] o 2 o},
o o -g, o o -2
(6.61)
o 0 0 0 0 0
B, = | 0o -2 0 B, = P 0
N 9y . 4 q, .
6 o -2q, 0 0 bas

We do not have to know b,g explicitely because it does not influence the behavior of the

solution of
(6.62) t'= -l - —_ - — E_‘ )
. + + ose .
u3 x( 2 u

3 3
x

=48~




From Chapter 3 we get

2
-X g x

(6.63) u_ = p_(x,g )8 > g"'::'2 (%,9.) ~ 1+ p. (g )x '+ p.(g)x 2 + eee

’ 3 T Pylxeg,le + Pylxeg, P31'9.'x P329 7% :

Moreover we get:

u, 1 o 1 0 0 i [o o 1 0 0 u,
(6.60)( " ) = ( + + = + = A ERTDIY
2 0 0 0 2 x 0 -2gw X 0 -2+2g‘ 2

because the leading term which comes from By vanishes. Therefore the coefficient of

X |-

does not influence the behavior of Uqsuy . It is sufficient to solve

~

‘:1 ' 0 1 1o o 1[0 o ] Y
(6.65) - 0 0 + ;[0 2 + —5 [0 -2g ] - .
X @ u

2 2

et

We get directly by integration

(6.66) 3, = x%ex (33: ) and %, = x°0(1)
. 2 P x u’ .
Finally we conclude
x2 2 :
=3 T 9LX =X =29 _x ® X1
(6.67) £ = x +g_+ p(x.g)e £ +0(e Jo plxig ) ~ 1+ ] p,(9,)

i=1
with £ € R because we look for real solutions and because there is no column of the

-x2 - 2g_x
fundamental matrix of (6.56) which has the factor e .
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